• Seminario de Matemáticas - MACIMTE

  • jueves, 13 diciembre
  • Móstoles, Universidad Rey Juan Carlos Seminario 003 - Edf. Dept. II
  • En esta charla introduciremos los esquemas de compartición  de secretos, herramientas criptográficas que permiten distribuir un valor secreto entre un conjunto de participantes, de forma que sólo los subconjuntos autorizados de estos usuarios tengan la capacidad de reconstruir el secreto a partir  de los valores distribuidos recibidos, mientras que subconjuntos no autorizados no tienen ninguna posibilidad de obtener información sobre el secreto. Un ejemplo típico son las estructuras de acceso tipo umbral, en las que los conjuntos autorizados son todos aquellos cuyo cardinal es mayor o igual que un cierto valor (el umbral).

    Tradicionalmente, en los esquemas de compartición de secretos, el número de participantes es conocido al principio de la ejecución del protocolo y se tiene en cuenta a la hora de construir los valores distribuidos. Una reciente extensión de Komargodski et.al. permite considerar conjuntos de participantes no acotados a priori, de manera que, a la llegada de cada nuevo usuario, éste recibe un valor distribuido, sin haber un límite para el número máximo de usuarios que admite el esquema. Presentaremos algunas construcciones interesantes, debidas a Komargodski et. al. en este escenario.

    Finalmente, introduciremos otra extensión,  a la que llamamos “compartición  de secretos probabilística”, en la que sacrificamos la reconstrucción perfecta del secreto (esto es, hay cierta probabilidad de que un conjunto autorizado de usuarios no obtenga el secreto) a cambio de reducir drásticamente, en el caso no acotado, el tamaño de los valores distribuidos que reciben los participantes. Presentaremos algunas de las construcciones que hemos diseñado con este fin.

    Más información en: https://sites.google.com/view/seminario-de-mates-macimte/semmates_macimte